Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
TROPIHALACARUS SPIO, A NEW GENUS AND SPECIES OF HALACARIDAE (ACARINA: PROSTIGMATA) FROM THE GREAT BARRIER REEF

By J. C. OTTO* and I. BARTSCH**

INTRODUCTION

The halacarid fauna of Australia’s tropical coast is poorly known. Three species of Copidognathus and one species of Acarothrix have been described from near Darwin (BARTSCH, 1997), and one species of Copidognathus is known from the Great Barrier Reef (BARTSCH, 1996). The present study is part of a larger project aimed at surveying the halacarid fauna of the Great Barrier Reef in detail. Among the halacarids found is one that closely resembles Thalassacarus longirostris Bartsch, 1995, a species collected in New Caledonia. The assignment of the New Caledonian species to Thalassacarus Newell had been problematic, as the species differs from the type species of this genus in important aspects (BARTSCH, 1995). In the present paper, T. longirostris is removed from its uncertain assignment and a new genus is described to accommodate Tropihalacarus spio sp. nov. from Australia and the New Caledonian species T. longirostris (Bartsch), which was previously assigned to Thalassacarus Newell. The species Tropihalacarus spio sp. nov., of which the female, male and deutonymph are here described, was found in shallow, sandy deposits of the Great Barrier Reef. Characters by which T. longirostris and T. spio differ are listed.
erected for it and the new species from the Great Barrier Reef.

METHODS

Sand and coral rubble were collected by the first author from various depths using SCUBA equipment. Mites were extracted by washing the substrates in a bowl of water and decanting the supernatant through a 100 \(\mu \)m sieve. Mites were cleared in lactic acid and mounted in PVA (Boudreaux & Dosse, 1963). Drawings were made with the aid of a camera lucida.

Measurements are in micrometres (\(\mu \))m. Terminology follows Bartsch (1993). Abbreviations used in the description and figures are: \(AD \), anterodorsal plate; \(AE \), anterior epimeral plate; \(GA \), genitoanal plate; \(GO \), genital opening; \(OC \), ocular plate; \(PD \), posterodorsal plate; \(PE \), posterior epimeral plate; \(P-1 \), \(P-2 \), \(P-3 \), \(P-4 \), segments of palps designated from base of palp; \(I-IV \), leg I to leg IV; \(ds \), dorsal seta designated as \(ds-1 \) to \(ds-6 \) from anterior to posterior; \(pas \), parambulacral setae; \(pgs \), perigenital setae; \(sgs \), subgenital setae.

Abbreviations for depositories: ANIC, Australian National Insect Collection (Canberra, Australia); MTQ, Museum of Tropical Queensland (Townsville, Australia); ZMH, Zoologisches Museum Hamburg (Hamburg, Germany).

Genus Tropihalacarus gen. n.

Type species: Tropihalacarus spio sp. nov.; here designated.

Diagnosis (Adult)

Idiosoma slender. Dorsum with well developed plates \(AD \), \(OC \), and \(PD \) and six pairs of setae, of which the posteriormost is situated dorsally on the anal cone. \(OC \) with two gland pores. Venter with plates \(AE \), \(PE \) and \(GA \). \(AE \) with three pairs of setae, \(PE \) with one dorsal and three ventral setae. Female \(GA \) with three pairs of \(pgs \). Gnathosoma elongate. Palps four-segmented; \(P-2 \) with one dorsal seta; \(P-3 \) with minute medial spinelet; \(P-4 \) with three setae in basal whorl. Tibia I with four ventral setae, tibiae II and III each with three ventral setae and tibia IV with two ventral setae; ventromedial setae of tibiae II and III bicepinate. Tarsus with numerous ventral eupathidia. Solenidion of tarsus I on dorsolateral membrane of claw fossa, on tarsus II on medial membrane.

Tropihalacarus spio sp. nov.

(Figs 1-13)

Material examined

Paratypes. 2 females, 2 males, 2 deutonymphs, data as for holotype (1 female, 1 male and 1 deutonymph in ZMH, others in MTQ; 1 female, Great Barrier Reef Marine Park, 18° 26.36’S, 146° 42.24’E, Bramble Reef, 9 April 1998, J. C. Otto, coarse sand at 5 m (MTQ); 2 males, 1 female, Rosser Reef, ca. 15°37’ S 145°33’ E, 8 Oct. 1998, sand at 2 m (all in MTQ except 1 male in ANIC).

FEMALE

Idiosoma. 570-648 long. Striated integument with setae \(ds-2 \), \(ds-3 \), \(ds-4 \) (Fig. 1). \(AD \) with a conspicuous cone-like swelling carrying a small protuberance anteriorly and posteriorly; posterolateral to swelling with pair of gland-pores and posteromeral to these pair of \(ds-1 \); between \(ds-1 \) and gland pores with a transverse crease; posterior to setae \(ds-1 \) with distinct foveae; scattered canaliculi directly posteralateral of \(ds-1 \). \(OC \) with a long and narrow tail extending beyond insertions of legs \(IV \) (Fig. 1); main anterior part with two pores; cuticle between pores with faint foveae and fine canaliculi; eye pigment present, but cornea absent. \(PD \) longer than half the length of idiosoma (Fig. 1); with distinct fovea except for pair of smooth costae. Costae in some specimens extending over half the length of \(PD \), in other specimens over the entire length of \(PD \); with pair of gland pores posteriorly. Seta \(ds-5 \) inserted anterolateral to pores in posterior half of plate. \(PD \) slightly concave at level of \(ds-5 \). Adanal setae (\(ds-6 \)) on anal cone in dorsal position. \(AE \) with faint foveae along lateral margins.
FIGS 1-2: Tropilacarus spio sp. nov., female.

1. Dorsal idiosoma; scale bar = 100 μm. 2. Ventral idiosoma; same scale as Fig. 1. Abbreviations: AD, anterodorsal plate; AE, anterior epimeral plate; OC, ocular plate; PD, posterodorsal plate; PE, posterior epimeral plate; ds-1 to ds-6, dorsal setae numbered in sequence from anterior to posterior; pgs, perigenital setae.

(Fig. 2), with three pairs of setae as illustrated; posterior margin truncate to slightly concave. PE with foveae, one dorsal and three ventral setae (Figs 1, 2). GA longer than AE (Fig. 2); truncate to slightly convex anteriorly; with faint foveae along outer margin; three pairs of pgs, the anteriormost pair distinctly anterior of GO.

Gnathosoma. Base of gnathosoma longer than twice the length of rostrum (Fig. 5); with pair of setae anteriorly; pierced by fine canaliculi throughout. Rostrum with one pair of setae proximally and two pairs of small spines at tip. Palp segment P-2 with one dorsal seta, P-3 with a tiny spinelet medially, barely visible even under oil-immersion. P-4 with three basal setae, a distolateral seta and apically with one minute seta, two spurs and a minute spinelet (barely visible even under oil immersion). Cheliceral claw with a series of blunt teeth (Fig. 4).

Legs. Slender (Figs 6-9); integument with delicate canaliculi, in particular on lateral flanks (Figs 6, 8, 9). Chaetotaxy (trochanter-tibia): I 1-2-3-5-10, II 1-2-4-5-8, III 1-2-3-3-6, IV 0-2-3-3-5. Two setae on each of tibiae II and III bipectinate (Figs 7-8). Genu I and tibia I each with one dorsal seta more delicate than other setae on segments. Telofemora I and II and to lesser extent telofemur III with two dorsal cuticular projections (Figs 6-8). Tarsus I with three dorsal setae and one ventral seta, relatively long blunt solenidion on lateral membrane of claw fossa and ca. ten pairs of pas (Fig. 10). Tarsus II with three dorsal fossary setae (one distinctly more proximal than the other), relatively long solenidion on medial membrane of claw...
fossa, two ventral setae and pair of single \textit{pas} (Fig. 11). Tarsi III and IV with three dorsal setae, two ventral setae and pair of single \textit{pas} (Figs 8-9). All tarsi with paired claws, but without empodium. Paired claws on tarsus I with smooth shaft and accessory process (Fig. 10), on tarsi II-IV with conspicuous pectines along shaft and with small accessory process (Fig. 11).

\section*{MALE}

As described for female, except the following:

\textit{Idiosoma}. Length 570-613. \textit{GO} surrounded by ca. 80-100 fine \textit{pgs} (Fig. 3); five pairs of \textit{sgs} arranged in an anterior group of two pairs and a posterior group of three heavier pairs.
Figs 6-9: Tropibalcarus spio sp. nov., female.

6. — Leg I, lateral view; scale bar = 100 μm. 7. — Leg II, medial view. 8. — Leg III, lateral view. 9. — Leg IV, medial view. All legs to same scale (Fig. 6). 10. — Tarsus I, lateral view; scale bar = 50 μm. 11. — Tarsus II, lateral view, same scale as Fig. 10. Abbreviations: pas, paramulacral setae; ω, solenidion.
DEUTONYMPH

As described for female, except the following:

Idiosoma. Length 552-568. Dorsal plates and setae *ds-2, ds-3, and ds-4* widely separated by striated cuticle (Fig. 12); setae *ds-3 and ds-4* inserted next to small platelet with a central canaliculus (arrow in Fig. 12). *AD* posteriorly more pointed than in female. *OC* without tail-like extension. *PD* without constriction; *ds-5* inserted about half way along plate. *AE* posteriorly pointed; without foveae (Fig. 13). *PE* with inconspicuous lateral foveae. *GA* shorter than in female; lacking foveae; with two pairs of setae (one specimen with one anterior pair of setae and single posterior seta only).

Legs. Tibia I with nine setae, tibia II with seven setae.

COMMENTS

Trophilacarus spio can be distinguished from the only other known species of *Trophilacarus, T. longirostris* (Bartsch) comb. n. (see below), by possessing a
cone-like swelling on the AD, the tail-like posterior extension of the OC being about twice as long as the anterior part instead being of equal length, having one pair of setae on the rostrum and one pair on the gnathosomal base, instead of both pairs on the rostrum, and by having two ventral setae on tarsi III and IV, which are both lacking in T. longirostris.

Tropihalacarus longirostris (Bartsch) comb. n.

COMMENTS

BARTSCH (1995) placed this species temporarily in _Thalassacarus_, but expressed doubts as to whether it was assigned correctly. It differs from the type species of _Thalassacarus_, _T. commatops_ Newell, 1949, by a number of characters which are usually fairly constant within genera. For example, the adanal setae are not situated ventrolateral to the anal papillus as in _T. commatops_ but dorsally, the teeth on the cheliceral claw are not as prominent as in _T. commatops_ and legs II and III possess two bipectinate setae, while in _T. commatops_ the only bipectinate seta is inserted on tibia I. The most conspicuous difference between _T. longirostris_ and _T. commatops_ is the lack of the elongated gnathosomal base in the latter. Thus, the previous assignment of _T. longirostris_ to _Thalassacarus_ appears unsatisfactory since it resulted in broadening the definition of this genus to the extent that it became poorly defined. The discovery of _Tropihalacarus spio_ n. sp., which is more similar to _T. longirostris_ than _T. commatops_ is, now makes it possible to remove _longirostris_ from its uncertain assignment and to assign it to the better defined genus _Tropihalacarus_.

ACKNOWLEDGEMENTS

We thank the Australian Biological Resources Study (ABRS) for funding the present project and the Australian Institute of Marine Science and John BENZIE for providing the first author (J.C.O.) with all necessary facilities and laboratory space. We are grateful to the Great Barrier Reef Marine Park Authority for giving permission to collect halacarid mites and John BENZIE and Kate WILSON for comments on the manuscript. This publication is contribution number 934 of the Australian Institute of Marine Science.

REFERENCES

