Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
NEW SPECIES OF ORIBATID MITE,
**EREMAEOZETES ROGERSI** N. SP. (ACARI: ORIBATIDA)
FROM SANDSTONE OUTCROPS IN GEORGIA, USA

BY H. SCHATZ¹, F.M. McALOON², and D.V. HAGAN³

(Accepted June 2006)

ACARI, ORIBATIDA
GEORGIA, USA
OUTCROPS
EREMAEOZETES
NEW SPECIES

SUMMARY: *Eremaeozetes rogersi* n.sp. (Acari, Oribatida, Eremaeozetidae) is described from specimens collected from a Pleistocene sandstone outcrop from the coastal plain of southern Georgia, USA (type locality). Additional material from Florida and Alabama was included into this study.

INTRODUCTION

The genus *Eremaeozetes* was erected by Berlese (1913). Schatz (2001) published an extended diagnosis of the genus. Prior to this study, 31 species had been described from all tropical regions: six species from Africa (Angola, I. Pagalu, South Africa); nine from the Oriental Region (West Bengal, Indonesia, Singapore, Brunei, Philippines, South China); five from the Pacific region (New Guinea, Micronesia, West Samoa, Tahiti, Hawaii); nine from South America (Argentina, Brazil, Chile, Paraguay, Uruguay, Galapagos I.); and five from Central America (Mexico, Costa Rica, Antilles). Fossil *Eremaeozetes* have been recorded from Quaternary peat and lake settlements, and from Tertiary amber in the Dominican Republic (Norton & Poinar, 1993, Elias, 1994). Marshall et al. (1987) mentioned an undescribed *Eremaeozetes* species from North Carolina. Apart from their report, no *Eremaeozetes* species from North America has been recorded until now.

In this paper we describe a new species of *Eremaeozetes* collected from Pleistocene-aged sandstone outcrops in Georgia, USA. This species has also been found in Florida (collection R.A. Norton) and in Alabama (Canadian National collection).

MATERIAL AND METHODS

Sandstone outcrops in the southeastern US are ecologically significant formations that, along with the encompassing wiregrass, longleaf pine, and scrub oaks, create a unique habitat; one which contains several threatened and endangered plants and animals. The climate in the coastal plain region of southern Georgia and northern Florida is characterized as being humid-subtropical.

Oribatid mites from outcrops were collected at the Broxton Rocks Nature Preserve, Coffee County, southern Georgia, USA, from moss and lichen beds in soil depressions associated with sandstone rocks.

1. Institute of Ecology, Leopold-Franzens-University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria, heinrich.schatz@uibk.ac.at
2. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Ct. 06269, michael.mcaloon@uconn.edu
3. Institute of Arthropodology and Parasitology, Georgia Southern University, Statesboro, Georgia, 30460-8042, dhagan@georgiasouthern.edu

Figs. 1-4. — *Eremaeozetes rogersi* n. sp., scanning micrograph of adult with cerotegument: 1. — lateral view. 2. — lateroventral view. 3. — dorsal view. 4. — laterodorsal view (Bar: Figs. 1-4: 100 µm).
Samples containing detritus, soil and lichen were collected by removing fragments of topsoil and vegetative material from various areas in the wiregrass habitat. Additional specimens from Florida and Alabama from previous collections (see below) were sent to us for study.

The following conventions of measurement are used. Total length: measured in ventral view from anterior edge of cusp to posterior edge of notogastral plate; Width: measured immediately posterior to the pteromorph-like projections. Conventions of setal terminology follow Schatz (2001). As in most Eremaeozetes species, the present specimens are covered by a layer of cerotegument. For a detailed study of the surface structures, the cerotegument of some specimens was removed (cf. Schatz 2001). Scanning electron microscopy was used in order to obtain three dimensional images adapting the techniques of Woolley (1971).

**Eremaeozetes rogersi** n. sp.
(Figs. 1-14)

**Diagnosis:** The adult instar of the new species differs from its congeners by the following combination of character states: surface covered by thick layer of cerotegument, anterior notogastral margin projecting anteriad, notogastral surface with a weakly elevated central field and lateral lobes, all notogastral and ventral setae short and setiform, posteromarginal setae situated on small tubercles, afferent regions of the legs (Figs. 1-4). Only sensilli, lenticulus, and posterior part of the interlamellar area uncovered. Anterior part of notogaster including humeral lobes and pteromorph-like projections covered with a broad ribbon of darker rugose cerotegumentary layers, forming a collar around posterior part of lenticulus. Beneath cerotegument notogastral surface similar in contour to that covered with cerotegumentary layer, but smoother in texture. After removal of cerotegument, surface appearing light brown and punctulate with small oval foveae.

**Prodrorum** (Fig. 5). Anterior part of prodorsum covered by large lamellae, rostrum visible by transparency, better in lateral or ventral view. Rostrum rounded, with a short and pointed apex dorsally. Tutorium terminating in a small cuspis. Lamellae long and broad blades, lamellar cusps reaching 20-30 µm anteriad of rostrum, anterior edges rounded, short apex curved ventrad. Cusps narrowly separated. Lateral edges of lamellae converging anteriad. Each cusp with an indistinct medial thickening dorsally, originating from the common base at prodorsum and leading anteriad. Interlamellar field containing indistinct and narrow V-like ridge, pointing anteriad towards the gap between cusps. No interlamellar apophysis.

**Color and surface.** Medium brown, with thick, patterned cerotegument covering major part of prodorsum, notogaster, ventral plate, gnathosoma and the afferent regions of the legs (Figs. 1-4). Only sensilli, lenticulus, and posterior part of the interlamellar area uncovered. Anterior part of notogaster including humeral lobes and pteromorph-like projections covered with a broad ribbon of darker rugose cerotegumentary layers, forming a collar around posterior part of lenticulus. Beneath cerotegument notogastral surface similar in contour to that covered with cerotegumentary layer, but smoother in texture. After removal of cerotegument, surface appearing light brown and punctulate with small oval foveae.


Figs. 5-7. — *Eremaezetes rogersi* n. sp. adult, cerotegument removed: 5. — dorsal view. 6. — lateral view, legs removed (except trochanter of leg IV). 7. — ventral view, legs removed (except trochanter of leg IV) (Bar: Figs. 5-7: 100 µm).
on each side, circumscribed by lesser humps running parallel along each side. Pteromorph-like projections extending laterally and ventrad between legs II, III; distally tapering and curving inwards toward ventral plate, visibly longitudinally striated when cleared in lactic acid solution.

Notogastral setae arranged in ten pairs. Setae thin, all short (length 5-6 μm), smooth and attenuating, often hardly visible with cerotegumentary layer intact. Postero marginal setae of rows h and p situated on small tubercles. Setae ln on central elevation. Lyri fissures la situated anterior to setae la, lyri fissures lm lateral to setae ln, lyri fissures ip between setae hj and h2, lyri fissures ih lateral to setae h3, and lyri fissures ips lateral to setae lp. Latero-abdominal glands (gla) posterior to lyri fissure im.

Lateral aspect (Fig. 6). Pedotectum I large, forming a broad scale, fixed posteriorly and ventrally and reaching dorsally to near bothridium. Pedotectum II a smaller scale, almost round, fixed posteriorly. Discidium large, with a ventral scale directed caudad. Posterodorsal of acetabulum IV a roof-like thickening.

Gnathosoma (Fig. 7). Subcapitulum diarthric, mentum large (75 × 50 μm), surface foveate, distally and proximally with a transverse ridge each. Subcapitular setae attenuating, almost spiniform, setae h straight, length 8 μm, setae m and a curved proximad, length 12 μm each. Chelicerae (Fig. 14) of chelate-dentate type, size (n=6): 90-95 × 35-40 μm, length of movable digit 37-40 μm. Setae cha inserted paraxially near dorsal margin, directed anteriad, setae chb inserted abaxially lateral to movable digit, directed anteriad, length of cheliceral setae 12-16 μm. Trägårdh’s organ tapering anteriad. Palps (Fig. 8) with long femur and long tarsus, setal formula (solenidion in parentheses): 0-2-1-3-9 (1).

Ventral region (Fig. 7). Apodemes I complete and fused medially, apodemes II and III as well as sejugal apodemes medially incomplete. Anterior to genital plates a well-developed sclerotized scale present, directed posteriad, 14-20 μm wide, surrounded laterally and anteriorly by ridges, latter seeming to connect sejugal apodemes medially and leading from inner tip of each sejugal apodeme posteriad towards lateral edges of genital plates. Epimeral setal formula 3-1-2-2, all setae attenuating, very short (length 2 μm). Anogenital setae attenuating. Genital plates with 6 pairs of setae, setae g2 laterad of g1, setae g1 longer (length 10 μm) than other genital setae (3-5 μm); 1 pair of aggenital setae (length 2 μm), 2 pairs of anal setae (length 5 μm) and 3 pairs of anal setae (length 5 μm) present. Adanal setae ad1 and ad2 situated on tubercles on a small ridge posterior to anal plate, setae ad3 lateral to anal plates. Adanal lyri fissures (iad) adjacent and parallel to anal plates, level with their anterior third.

Legs (Figs. 9-13). All legs monodactylyous with strong claws. Length (with claws) 150-180 μm (35-45 % of body size). Setal formula of legs (trochanter to tarsus, solenidia in parentheses): leg I 0 - 4 - 3 (1) - 4 (2) - 16 (2), leg II 0 - 4 - 3 (1) - 4 (1) - 13 (2), leg III 0 - 2 - 1 (1) - 3 (1) - 13, leg IV 0 - 2 - 2 - 3 (1) - 13. Femora with a strong ventral thickening, especially femora II and IV with a blade-like keel, trochanter IV with a large ventral scale. Length of solenidion ω1 on tarsus I 14 μm, solenidion y1 on tibia I very long (70-75 μm), inserted on a large distal projection which also bears the solenidion y2, the latter short (length 6 μm). Length of solenidion σ on genu I 30 μm.

SEXUAL DIMORPHISM, EGGS. Females larger, some of them bearing one or two eggs. Dimensions of eggs (n=3): 130-145 × 60-80 μm, shape oval to elliptical, surface alveolate. Apart from adult size, no external sexual dimorphism could be observed.

Figs. 8-14. — *Eremaeozetes rogersi* n. sp. adult: 8. — pedipalp. 9. — leg I, femur — tarsus. 10. — leg II, femur — tarsus. 11. — leg III, femur — tarsus. 12. — leg IV, trochanter and femur. 13. — leg IV, genu — tarsus. 14. — chelicera. All appendages in abaxial aspect (Bar a — Fig. 8: 20 μm, Bar b — Figs. 9-14: 50 μm).
The alcohol-preserved holotype (type locality: Broxton Rocks Nature Preserve, Coffee County, Georgia, USA, 31°43.2′N, 82°51.0′W), and paratypes from the same site are deposited at the National Museum of Natural History, Washington, D.C. Additional paratypes in the University of Connecticut Biological Collections, Storrs, Connecticut.

**Remarks.** The new species belongs to the “Eremaeozetes-riculatus group” (SCHATZ, 2003), an Eremaeozetes species group with longitudinal ridges on the notogaster separating a central field and lateral lobe-like extensions, a medial ridge on the posterior part of the notogaster, a scale anterior to the genital plates, and monodactylous legs. This combination of character states is also present in *E. araucana* Monetti, Oppendisano and Fernandez, 1994 (Argentina), *E. lineatus* Mahunka, 1985 (Mexico, Lesser Antilles), *E. louisae* Schatz, 2003 (South Africa), *E. machadoi* Schatz, 2003 (South Africa), *E. reticulatus* Balogh, 1958 (Angola, I. Pagalu), and *E. sabinae* Schatz, 2000 (Hawaii). In *E. rogersi* n. sp. the projecting fields and ridges are more weakly expressed than in any other species of this group. The new species is morphologically similar to *E. lineatus* Mahunka, 1985, but it differs from the latter in having a broader and weaker central hump on the notogaster, setae *lm* situated on this elevation, and a smaller sclerotized scale anterior to genital plates. Among other congeneres with a sclerotized pre genital scale the species *E. acutus* Covarrubias, 1967 (Chile), *E. darwini* Schatz, 2000 (Galapagos I.), and *E. roguini* Mahunka, 1998 (Lesser Antilles, Costa Rica, Cocos I.) are without projecting fields or ridges on notogaster. The new species differs from the other Eremaeozetes species by the characters described herein.

The specimens found in Alabama, Florida, and Georgia are considered conspecific. A minor difference is the slightly smaller body size of the specimens from Alabama and Florida.

**Derivatio nominis.** The new species has been named in honor of Dr. George A. Rogers, Professor Emeritus and distinguished naturalist, Georgia Southern University, Statesboro, Georgia.

**Acknowledgements**

Dr. Roy A. Norton, Syracuse, New York, and Dr. Valerie M. Behan-Pelletier, Ottawa, Ontario, kindly sent specimens from Florida and Alabama to one of us (HS) for examination. The authors also wish to thank Dr. John D. Spooner, Aiken, South Carolina and Frankie Snow, Douglas, Georgia for their guidance and assistance at the collection site in Georgia. Funding was provided in part by The Nature Conservancy of Georgia.

**References**

Berlese (A.), 1913. — Acari Nuovi, Manipoli VII -VIII. — Redia (Firenze), 9:92.


