Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
giving your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
A NEW SPECIES OF *NEOPHYLLOBIUS* BERLESE (ACARI: CAMEROBIIDAE) FROM TURKEY

By Kamil KOÇ 1 & Nilgün MADANLAR 2

(Accepté Décembre 2000)

SUMMARY: A new *Neophyllobius* species from Turkey, viz. *Neophyllobius ayyildizi*, is described and illustrated.

RESUMÉ : Description de *Neophyllobius ayyildizi* n.sp. de Turquie

The genus *Neophyllobius* was described by BERLESE (1886), with *Neophyllobius elegans* as type species. This genus is the largest in the family Camerobiidae (KOÇ & AYYILDIZ, 1996; BOLLAND, 1991). *Neophyllobius* are known to feed on first-instar nymphs (crawler) of armoured scale insects (Homoptera: Diaspididae) and on various plant-inhabiting mites (GERSON & Smiley, 1990).

Two species of this genus were known from Turkey, until now: *N. turcicus* and *N. communis* (KOÇ & AYYILDIZ, 1996; KOÇ, 1999). This paper, a continuation of our study of Camerobiidae in Turkey, and comprises the description of the female and proto-nymph of a new species.

MATERIAL AND METHODS

Mites were collected in Izmir province from orange and mandarina leaves, using brushes. The mites were preserved in 70 % ethanol, then removed by a fine tipped brush, and placed in HOYER’s medium.

In the following description, all measurements are given in micrometers (µm). The setal nomenclature used follows LINDQUIST’s (1985) system as applied by TORR et al. (1998). Type material is deposited in CBZM (Zoological Museum of Celal Bayar University, Manisa, Turkey).

The genus *Neophyllobius* Berlese, 1886

Type species: *Neophyllobius elegans* Berlese, 1886. p. 31.

Neophyllobius ayyildizi sp. nov.

FEMALE. — Dimensions minimal and maximal values (holotype length). Length of idiosoma (including gnathosoma) 300-352 (352); width 221-263

1. Department of Biology, Faculty of Arts and Sciences, Celal Bayar University, Muradiye- Manisa, TÜRKİYE. E-mail: kmfkoc@ixir.com.tr
2. Department of Plant Protection, Faculty of Agriculture, Ege University, 35100 Bornova-Izmir, TÜRKİYE

Fig. 1. — Neophyllюbius ayyildizi sp. nov. Female. — A. — Dorsum of idiosoma. B. — Seta c₂. C. — Seta f₁. D. — Leg I E. — Tarsus I. F. — Leg III. G. — Leg IV. H. — Leg II.
Dorsum. — Striae fine on prodorsum and around setal bases of opisthosoma, otherwise coarse; with 15 pairs of long, serrate dorsal setae and set on tubercles (Fig. 1, A, B, C). The length of dorsal setae varies as follows: prodorsal setae \(v_1 = 53-58 \) (58), \(v_2 = 49-58 \) (58), \(sc_1 = 53-58 \) (58), \(sc_2 = 47-53 \) (53) and \(pdx = 53-58 \) (58); opisthosomal setae \(c_1 = 53-63 \) (63), \(c_2 = 68-79 \) (79), \(d_1 = 53-68 \) (68), \(d_2 = 53-53 \) (53), \(e_1 = 53-74 \) (74), \(e_2 = 47-53 \) (53), \(f_1 = 47-58 \) (58), \(f_2 = 32-42 \) (42), \(h_1 = 32-32 \) (32), \(h_2 = 26-26 \) (26); 2 pairs of eyes lateral of setae \(sc_2 \). All dorsomedian (\(mc \) according to GERSON, 1968) setae reach bases of the next dorsomedian setae.

Venter (Fig. 2 A). — With one pair of long, smooth setae on small platelets between coxa III and IV, one pair of aggenital setae anterior to genital opening, 2 pairs of genital setae and 3 pairs of closely set pseudoanal setae posterior to genital opening.

Gnathosoma. — Infracapitulum with 1 pair of smooth setae (\(m \)) and 2 pairs of adoral setae. Palpus similar to female.

Leg (Fig. 3 D-G). — Setation (solenidia in parentheses): coxae 3-1-2-0, trochanters 1-1-1-0, femora 3-2-1-1, genua 1-1-1-1, tibiae 5(+ 1)-5(+ 1)-5(+ 1)-3(+ 1), tarsi 8(+ 1)-7(+ 1)-6-4.

Diagnosis: N. ayyildizi may be readily distinguished from other species of the genus by presence genu I, III and IV setae whip-like, and genu II setae not whip-like. The new taxon is close to Neophyllobius armeniaca Bolland, 1991; all dorsomedian (\(pdx, c_1, d_1, e_1, f_1 \) and \(h_1 \)) setae reach the bases of the next dorsomedian setae, the seta of genu II is not whip-like. It differs from N. armeniaca by the following characters:

1. \(d_1 \) is longer than \(c_1 \) (\(d_1 \) is shorter than \(c_1 \) in N. armeniaca).
2. \(f_1 \) is shorter than \(d_1 \) (\(f_1 \) is longer than \(d_1 \) in N. armeniaca).
3. Genu II seta does not reach to the proximal row of tibial setae (it reaches that row in N. armeniaca).
4. The distal setae on femur IV reach only the genual border (passes genual border in N. armeniaca).
5. The proximal seta on femur IV reaches bases of the distal setae (does not reach the bases of the distal setae in N. armeniaca).

Key to the Turkish species of Neophyllobius

1. — Genu I setae not whip-like ... communis Gerson, 1968
2. — Dorsoanal setae, genital opening and setae absent. ...

1. — Genu I setae whip-like ... 2
2. — Dorsoanal setae, genital opening and setae absent. ... ayyildizi sp. nov.
REMARKS

The orange and mandarina leaves on which we found the species of *N. ayyildizi* were also heavily infested with red scale, *Aonidiella sp*.

Etymology: This species is dedicated to Prof. Dr. Nusret Ayyildiz, Acarologist at Erciyes University, Turkey, my teacher and colleague.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. H.R. Bolland for critically reading the manuscript.

REFERENCES

