Share this article    

       

       

A new species Zachvatkinibates svanhovdi sp. nov. (Acari: Oribatida: Punctoribatidae) from Norway with comments on Punctoribatidae in Fennoscandia

Seniczak, Anna 1 ; Seniczak, Stanisław 2 ; Hagen, Snorre B.3 and Klütsch, Cornelya F. C.4

1✉ Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway.
2Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland.
3Norwegian Institute of Bioeconomy Research, NIBIO - Division of Environment and Natural Resources, Svanhovd, Norway.
4Norwegian Institute of Bioeconomy Research, NIBIO - Division of Environment and Natural Resources, Svanhovd, Norway.

2023 - Volume: 63 Issue: 1 pages: 41-57

https://doi.org/10.24349/skz7-19nt
ZooBank LSID: 9351C829-16CD-4084-A12E-1C98889982CD

Original research

Keywords

oribatid mites sexual dimorphism leg setation dorsal crest sex structure DNA barcoding

Abstract

The adults of the new species Zachvatkinibates svanhovdi A. Seniczak & S. Seniczak sp. nov. are described and illustrated from Norway, and this is the first finding of Zachvatkinibates Shaldybina, 1973 in Fennoscandia. This species is the most similar to Z. quadrivertex (Halbert, 1920), but differs from it mainly by the shape of notogastral setae, posterior tectum of notogaster and lack of postanal porose area Ap, which in Z. quadrivertex is present. In Z. svanhovdi, the prodorsal seta in is long, translamella is narrow, notogastral setae are short and distally pliable, notogastral porose areas are usually oval and of medium size, but Aa can be larger, especially in males. Dorsal crest on tarsus I is present. The cytochrome oxidase I (COI) barcodes (length: 658 bp) of five specimens of the new species are provided; the maximum variation within the species was 2.41% (p-dist). The morphology and ecology of the new species is compared with other Zachvatkinibates species. The knowledge on family Punctoribatidae in Fennoscandia is updated, and Mycobates carli (Schweizer, 1922) is first reported from Norway.


Introduction

Zachvatkinibates Shaldybina, 1973 sensu stricto, with the type species Z. nemoralis Shaldybina, 1973, is a medium sized genus that comprises 18 species, according to Subías (2004, 2022). However, this author included Minunthozetes selgae Pérez-Íñigo, 1976 in this genus, which is not consistent with diagnosis of Behan-Pelletier & Eamer (2008). In the later species, the posterior notogastral tectum is complete, whereas in Zachvatkinibates it is medially broken.

The diagnosis of the adult of Zachvatkinibates was proposed by Shaldybina (1973), but Behan-Pelletier (1988) and Behan-Pelletier & Eamer (2005) consecutively modified it, and in the latter paper it was as follows: notogaster with rounded, convex medial process on anterior tectum and pair of thickened bands bordering medial process, posterior notogastral tectum incomplete medially, indicated by wide margination or narrow slit bordered by overlapping tectal lobes; lenticulus absent, octotaxic system expressing sexually dimorphism in some species, postanal porose area and axillary saccule of subcapitulum present, and mental tectum of subcapitulum absent.

The main aim of this paper is to describe and illustrate the morphology and ecology of Z. svanhovdi, and to compare it with congeners. Another aim is to update information on Punctoribatidae in Fennoscandia, and add Z. svanhovdi and Mycobates carli (Schweizer, 1922) to the list of species in this region.

Material and methods

Study site

The sample was collected at the river outlet (Figure 1) of the Jacob's River in north-eastern Finnmark, Sør-Varanger municipality, Norway. The region is characterized by an oceanic-continental climate with a mean annual temperature of 0.1 °C and a mean annual precipitation of approximately 620 mm (Bjørklund et al. 2015). The Jacob's River (Grense Jakobselv; area 237 km2) is a river that runs along the Norwegian-Russian border and discharges into the Varanger Fjord, a bay located in the Barents Sea. The river is part of the Norwegian Protection Plan II3 and hence cannot be used for hydropower purposes. Generally, the vegetation can be characterized as northern boreal in a transition zone between oceanic and continental vegetation sections (Moen 1998, Bjørklund et al. 2015) in north-eastern Finnmark. The landscape along the river consists of hills with sparse heath vegetation near the coast, hilly landscapes and plateaus further inland. Along the river, the vegetation is commonly characterized by different vegetation types: closest to the river is often a well-developed sandy beach with key plants like the oyster plant (Mertensia maritima L.), followed by a transition zone with oyster plant and sea pea (Lathyrus japonicus Willd.), white sandy dunes with sand ryegrass [Leymus arenarius (L.) Hochst.] and sea pea, grey sandy dunes with sand ryegrass and red fescue (Festuca rubra L.), and dry, species-poor dune grass heath with strong hints of fringed pink (Dianthus superbus L.; https://elvedelta.miljodirektoratet.no/delta-322.htm , https://www.biodiversity.no/NiN2.0/T21-C-2 ). At the river outlet, where the sample was taken, there is also a semi-limestone beach meadow (Elven & Johansen 1983), which is characterized by freshwater-affected salt weed (Salicornia sp.) communities (P.E. Aspholm, NIBIO, Svanhovd; pers. comm.). The sampling location was in an area that is considered brackish water area (https://elvedelta.miljodirektoratet.no/delta-322.htm ).

Figure 1. General view of the river shore, where Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. was collected (photo: Arne Fjellberg).

Sampling and studying of mites

The adults of Z. svanhovdi A. Seniczak et S. Seniczak sp. nov. used in this study were collected by A. Fjellberg on 26.08.2021 from Troms and Finnmark county, Northern Norway, Sør-Varanger community and Gr. Jakobselv locality, at river outlet (69.71258° N, 30.87123° E, 0.5 m a. s. l.). One collective sample was taken on the shore of Jacob's River, in the transect from the river edge to more distant part from it (about 10 m long, Figure 1). This sample was extracted in Berlese funnel for one week. We investigated the density, sex ratio, number of gravid females and carried eggs, and body length and width, based on 30 randomly selected specimens. We measured a total body length (tip of rostrum to posterior edge of notogaster) in lateral aspect and body width (widest part of notogaster) in dorsal aspect, and size of anal and genital openings and setae perpendicularly to their length in µm.

The illustrations are limited to the dorsal, lateral and ventral aspect and some leg segments of adult, and palp and chelicera. Illustrations were prepared from individuals mounted temporarily in lactic acid. In the text and figures we used the following abbreviations: rostral (ro), lamellar (le), interlamellar (in) and exobothridial (ex) setae, lamella (La), translamella (Tr), bothridium (bo), bothridial seta (bs), tutorium (Tut), pteromorph (Ptm), notogastral setae (c2, l-, h-, p-series), porose areas (Aa, A1, A2, A3), lyrifissures (ia, im, ih, ip, ips, iad), circumpedal carina (cp), opisthonotal gland opening (gla), subcapitular setae (a, m, h), pedotectum (Pd), custodium (cus), discidium (Dis), genal tooth (gt), cheliceral setae (cha, chb), Trägårdh organ (Tg), palp setae (sup, inf, l, d, cm, acm, lt, vt, ul, su) and solenidion ω, epimeral setae (1ac, 2a, 3ac, 4ac), genital (g) and aggenital (ag) setae, adanal and anal setae (ad-, an-series), leg solenidia (σ, φ, ω), famulus (ε) and setae (bv, ev, d, l, ft, tc, it, p, u, a, s, pv, pl, v). Terminology used follows that of Grandjean (1949, 1953) and Norton and Behan-Pelletier (2009). The species nomenclature follows Subías (2004).

For scanning electron microscopy (SEM), four mites were air-dried and coated with Au/Pd in a Polaron SC502 sputter coater and placed on Al-stubs with double-sided sticky carbontape. Observations and micrographs were made with a ZEISS Supra 55VP scanning electron microscope.

DNA barcoding

Five specimens of Z. svanhovdi were used for DNA barcoding. Each specimen was photographed, and the photos are available at Barcode of Life Data System (BOLD, http://boldsystems.org ). The specimens were subsequently placed in a well containing 50 ml of 90% ethanol in a 96-well microplate and send to the Canadian Centre for DNA Barcoding (CCDB 2021). Mites were sequenced for the barcode region of the COI gene according to standard protocols at CCDB (http://www.ccdb.ca ), using either LepF1/LepR1 (Hebert et al. 2003) or LCO1490/HCO2198 (Folmer et al. 1994) primer pairs. The DNA extracts were placed in archival storage at -80 °C at the Canadian Centre for DNA Barcoding. The sequences are available in GenBank (accession numbers in the section on the Type material). The voucher specimens are stored in the Entomological Collections at the Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway (ZMBN).

Obtained COI sequences were blasted against GenBank to detect and exclude possible contaminations and ensure high quality. Sequence variation within Z. svanhovdi specimens was calculated in BOLD using Kimura 2 Parameter distance model, pairwise deletion, and BOLD Aligner (Amino Acid based HMM).

Results

Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov.

ZOOBANK: A6272084-12BA-4FAC-BA43-7582C1D30CEB

(Figures 2–11)

Diagnosis

Adult of medium size (449–507), with generic characters of Zachvatkinibates given by Behan-Pelletier & Eamer (2005). Prodorsal seta in long, translamella narrow, notogastral setae short and distally pliable, notogastral porose areas usually oval and of medium size, but Aa can be larger, especially in males. Postanal porose area Ap absent, dorsal crest on tarsus I present.

Description of adults

Figure 2. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov., scale bars 50 μm. A – female, dorsal aspect, legs partially drawn; B – porose area Aa of another female (enlarged); C – notogaster of male; D – shape of porose area Aa of another male.

Figure 3. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov., female. A – ventral aspect, legs partially drawn, scale bar 50 μm; B – lateral aspect, legs partially drawn, scale bar 50 μm, mouthparts, right side, scale bars 20 μm; C – chelicera (Trägårdh organ in transparent area); D – palp.

Figure 4. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov., female, posterior aspect, scale bar 50 μm.

Measurements — Holotype (female) length 494, and width 299. Mean length (and range) of females 490.3±7.1 (481–507, n = 15) and males 468.9±12.2 (449–481, n = 15), mean maximum width (and range) of females 299.0±6.2 (293–319) and males 276.7±8.3 (254–293).

Integument — Brown and microporose.

Prodorsum — Sub-triangular, rostrum rounded. Seta ro relatively long (47–52), laterally barbed and in lateral position (Figures 2A, 3A, 3B, 5A, 5D, 6A–C, 8C, 8D, 9A, 10A), seta le longer (62–66), and seta in longest (77–80), both finely barbed; all acuminate; seta ex short (17) and smooth. Lamella long (77–110), narrow at base and wider in place of connection with translamella, translamella of medium size (29–31), narrow, lamellar cusp (length 15) rounded. Bothridium with well-developed medial scale, bothridial seta of medium size (43–46), clavate with smooth stalk and barbed head (Figures 2A, 3B, 5A, 5B, 5D, 6A, 6B, 6D, 7B, 7C, 9C).

Figure 5. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. adult, SEM micrographs. A – dorsal view; B – lateral view; C – ventral view; D – frontolateral view.

Figure 6. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. adult, SEM micrographs. Dorsal view. A – anterior and medial part; B, C – anterior part; D – medial and posterior part.

Figure 7. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. adult, SEM micrographs. Lateral view. A – posterior and medial part; B – anterior and medial part; C, D – anterior part.

Notogaster — Longer (females 380–398, males 357–378) than wide (females 293–319, males 254–293) with well-developed movable pteromorphs. Notogastral setae (10 pairs, including c2) short (15–26), and smooth (Figures. 2–3B, 4, 5, 6A, 6D, 7A–C, 8A, 9C, 9D). Lyrifissure ia posterolateral to seta c2, im anterior to seta h3, ip anterolateral to seta p1, ips anterior to seta p3, ih posterior to seta la, and opisthonotal gland opening gla anterolateral to seta h3 (Figures 2A, 8D). Shape of porose areas (4 pairs) differs between females and males. In females, porose areas oval, Aa slightly larger than other porose areas (Figures 2, 3B), in some individuals Aa can be elongated. In 15 males investigated, porose areas clearly larger (Figure 2C, 2D) than in females, and in some individuals Aa can be elongated, and of crescent shape or divided in two parts. Generally, in both sexual forms shape of other porose areas slightly varies within individuals, and postanal porose area is absent. Posterior tectum of notogaster is broken in middle and rounded ends overlap (Figure 4).

Figure 8. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. adult, SEM micrographs. Ventral view. A – posterior part; B – medial part; C, D – anterior part.

Figure 9. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. adult, SEM micrographs. A, B – anterior part; frontolateral view; C – bothridial setae; D – gla opening.

Gnathosoma — Subcapitular setae h, m and a short (18–24) and smooth (Figures 3A, 3B, 5C, 7B–D, 8C, 8D). Palp short (75), setae relatively short and smooth (Figures 3D, 5D, 9A, 10A), formula of palp setae [trochanter to tarsus (+ solenidion ω)]: 0-2-1-3-9(1). Chelicera longer (96), seta cha longer than chb, both barbed (Figures 3C, 9A, 10A). Axillary saccule short (12).

Ventral and lateral regions — Most epimeral setae short and smooth (10–13, Figures 3A, 5C, 8B, 8C). Genital setae (six pairs) as short as epimeral setae, g1-3 in anterior position. Aggenital setae (one pair) also short, adanal setae longer (three pairs, 22–29) and anal setae longest (two pairs, 29–32), all smooth (Figures 3A, 3B, 4, 5B, 5C, 8A, 8B). Lyrifissure iad short, located lateral to anterior part of anal plates. Discidium large, triangular; custodium long (40–42), narrow and pointed; tutorium long (122–126), narrow at base and distally wider and pointed (Figures 3B, 7B–D, 9A, 9B, 10, 11). Pedotectum I large (73 x 30), narrow at base and concave dorsally (Figure 3B), and with longitudinal striae, genal tooth of medium size (30–22). Circumpedal carina well formed. Humerosejugal porose areas Am and Ah oval.

Figure 10. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov. adult, SEM micrographs. Leg I. A – frontolateral view; B – lateral view; lateral view; C – legs I–III; D – leg III and VI.

Figure 11. Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov., leg segments of adult (part of femur to tarsus), right side, antiaxial aspect, setae on the opposite side not illustrated are indicated in the legend, scale bar 20 μm. A – leg I, tarsus (pl′); B – leg II; C – part of tibia and tarsus I; D – leg III, tibia (v″); E – leg IV.

Legs — Trochanters III and IV and all femora flattened with ventral carina. Porose areas on paraxial side of trochanters III and IV and femora I–IV. Femur I with longitudinal striae, most leg setae barbed (Figures 5, 6, 7, 8B–D, 9A–C). Seta ft″ on tarsus I relatively long, solenidia ω1 and ω2 of similar length, famulus short; solenidia ω1 and ω2 and famulus ε located on small dorsal crest. Solenidia ω1 and ω2 on tarsus II relatively long and of similar size. Formulae of leg setae [trochanter to tarsus (+ solenidia)]: I – 1-4-3(1)-4(2)-20(2); II – 1-4-3(1)-4(1)-15(2); III – 2-3-1(1)-3(1)-15; IV – 1-2-2-3(1)-12. Tarsi heterotridactlylous. Homology of leg setae and solenidia given in Table 1.

Table 1. Leg setae (Roman letters) and solenidia (Greek letters) in Zachvatkinibates svanhovdi A. Seniczak et S. Seniczak sp. nov.

Results of DNA barcoding

The barcode based on the cytochrome oxidase I (COI) mitochondrial DNA region (length: 658 bp) of five specimens of the new species is provided under GeneBank accession numbers: OP824977 (SUB2896631 SOITS201-22), OP824978 (SUB2896631 SOITS202-22), OP824979 (SUB2896631 SOITS203-22), OP824980 (SUB2896631 SOITS205-22), OP824981 (SUB2896631 SOITS204-22). The maximum variation within the species was 2.41% (p-dist) that is expected intraspecific variation of COI in oribatids. (e.g., Pfingstl et al. 2019, Seniczak et al. 2019). These are the first public COI sequences to be reported for the genus Zachvatkinibates and therefore, genetic distances to other species could not be calculated.

Distribution, ecology and biology

Zachvatkinibates svanhovdi was found in Troms and Finnmark county, Northern Norway, in a collective sample, taken in the transect on the shore of the river, so it is not possible to give precisely the species microhabitat. Among the 30 individuals investigated, collected at the end of August, the sex ratio (females to males) was 1:1, and no females were gravid and carried eggs.

Type material

The holotype (female) and four paratypes (2 females and 2 males) are deposited in the University Museum of Bergen, University of Bergen, Bergen, Norway (ZMBN).

Etymology

The species is named in honour of the biological station NIBIO Svanhovd, which is located in eastern Finnmark in the Pasvik valley, where the project leading to the collection and description of this new species was carried out.

Comparison of morphology of Zachvatkinibates svanhovdi with congeners and remarks

Seniczak et al. (2020d) compared selected morphological characters of adults of 15 Zachvatkinibates species and stated that the largest among them is Z. nortoni Behan-Pelletier et Eamer, 2005, and smallest is Z. anoporosus (Mahunka, 2006), and the body length of several species overlaps. These authors also compared the length of prodorsal seta in and notogastral setae, shape of translamella and some porose areas. To this list Z. erimo Shimano et Aoki, 2019 should be added. Based on this list of species, Z. svanhovdi A. Seniczak et S. Seniczak sp. nov. is the most similar to Z. quadrivertex (Halbert, 1920), but differs from it mainly by the shape of notogastral setae, posterior tectum of notogaster and lack of postanal porose area Ap, which in Z. quadrivertex is present. In Z. svanhovdi, most notogastral setae are distally pliable, whereas in Z. quadrivertex they are not. In both species, the posterior tectum of notogaster is broken in the middle, the ends are rounded, but in Z. svanhovdi they overlap, whereas in Z. quadrivertex they are separated by a certain distance. In Z. svanhovdi, lyrifissures ips and ih are placed at larger distances from seta p than in Z. quadrivertex. Moreover, in female of Z. svanhovdi porose area Aa is located between setae la and lm (vs. anteromedial to seta la in Z. quadrivertex), and porose areas A2 and A3 are as large as A1, whereas in Z. quadrivertex they are smaller than A1. In some males of Z. svanhovdi, the porose areas Aa are larger than in Z. quadrivertex. In the diagnosis for Zachvatkinibates by Behan-Pelletier & Eamer (2005), postanal porose area Ap is present, but Z. svanhovdi has no porose area, so the diagnosis for this genus should be changed to ''postanal porose area Ap present or absent''.

Table 2. Selected morphological characters of Zachvatkinibates species with distinct dimorphism of notogastral porose areas; ♀ – females, ♂ – males.

In Z. svanhovdi, sexual dimorphism is observed in the body size and octotaxic system (Table 2). Males are slightly smaller than females, have larger porose areas, and Aa can be divided in two parts (vs. in females it is uniform). In six other species of Zachvatkinibates, sexual dimorphism is more distinct than in Z. svanhovdi (Table 2). Interestingly, the species listed in Table 2 seem to be correlated with littoral habitats of cold climate zones (Behan-Pelletier & Eamer 2010, Behan-Pelletier 2015).

Table 3. Occurrence of Punctoribatidae in Fennoscandia, N – Norway, S – Sweden, F – Finland; * – new to Norway and Fennoscandia.

The adult of Z. svanhovdi has the dorsal crest on tarsus I, as other species of Zachvatkinibates (Shaldybina & Grishina 1987, Behan-Pelletier 1988, Bayartogtokh & Aoki 1998, Behan-Pelletier & Eamer 2005, Seniczak et al. 2020d). In Minunthozetes Hull, 1916, the leg crests are better developed than in Zachvatkinibates and occur on part of tibiae and tarsi I, II and IV (Seniczak & Seniczak 2018, Seniczak et al. 2018) and may suggest close relationship of Zachvatkinibates with Minunthozetes. In other genera of Punctoribatidae such as Mycobates Hull, 1916 and Punctoribates Berlese, 1908, the leg crests on tibiae and tarsi are absent (Seniczak & Seniczak 2008, Seniczak et al. 2015, 2020c). The latter two genera have dorsal projection on tibia II, which in Zachvatkinibates and Minunthozetes is absent.

Table 4. Distribution and ecology of Zachvatkinibates species.

Based on the checklists of Oribatida of Norway (Mehl 1979), Sweden (Lundqvist 1987), and Finland (Niemi et al. 1997), and other publications listed in Seniczak and Seniczak (2020) and Seniczak et al. (2020a,b, 2021), Z. svanhovdi represents the first finding of Zachvatkinibates in Norway and Fennoscandia. Species of Zachvatkinibates are known from Central and Eastern Asia, Northern America, and only few from Europe (Table 4). Their ecology varies a lot. For example, six species inhabit littoral zone and beach debris, other were found in bogs, forests, including forest canopy, and even in the debris in the alpine zone (Table 4).

Comments on Punctoribatidae in Fennoscandia and new record of Mycobates carli

The family Punctoribatidae to which Zachvatkinibates belongs to is represented in Fennoscandia by four genera and ten nominative species, including Mycobates carli (Schweizer, 1922) which is reported here as new to Norway and Scandinavian part of Fennoscandia (Table 3). It was found in alpine tundra in Finse (Vestland, Western Norway, 60°35′14.0″N 7°30′50.2″E, 1228 m a. s. l., 06.08.2022, leg. Anna Seniczak), on forest floor with mosses and lichens. The description of climatic conditions in Finse was given earlier (Seniczak & Seniczak 2021). This species was represented in the sample only by few adults, (density 10 individuals per 500 cm3), and co-occurred with more abundant M. sarekensis (Trägårdh, 1910).

Mycobates carli has been mostly considered a southern European (Subías 2004, 2022), European (Weigmann 2006) or Eurosiberian species (Honciuc 1993), known especially from the Central, Southern, Eastern, and South-Eastern parts of Europe. It has been reported from numerous localities in the Alps (Fischer & Schatz 2020, Schatz & Bruckner 2021), the Giant Mountains (Materna 2000, Starý 2006, Miko 2013), Carpathian Mts. (Nae & Băncilă 2017, Skubała & Maslak 2009), and is also known from Caucasus Mts. (Schatz & Bruckner 2021).

In the north of Europe it has only been reported from plain tundra of the Kola Peninsula (Leonov & Rakhleeva 2015). It is considered subalpine and alpine (Weigmann 2006, Fischer & Schatz 2007), predominantly lichenocolous (Materna 2000), and muscicolous (Schatz & Bruckner 2021). It has been found in a peatland, 870 m a. s. l. (Starý 2006), at dry limestone plateau, 550 m a. s. l. (Lazarus & Krisper 2014), and in soils polluted with heavy metals in Romania, where it was associated with Cu, As and Mn (Manu et al. 2019). Most often it has been collected from soil or ground vegetation, but has been also reported from the unique microhabitat of the intermediate layer between the base of the soil and the bedrock, called ''mesovoid shallow substratum'' (Nae & Băncilă 2017) and from decaying wood (Skubała & Maslak 2009).

Acknowledgements

We thank the anonymous reviewers for helpful comments and suggestions that improved the quality of this paper. We also express our gratitude to Dr. Arne Fjellberg for collection of the sample that contained the specimens. Further, we would like to thank Juho Vuolteenaho for assistance with field work. The study was supported by the grant to NIBIO from the Norwegian Taxonomy Initiative (Grant No. 9-21, 70184244). The DNA sequencing was financed by Norwegian Barcode of Life (NorBOL).



References

  1. Bayartogtokh B. 2003. Four species of oribatid mites (Acari: Oribatida) from Central and Southern Mongolia, with notes on the genera Montizetes and Zachvatkinibates. Mong. J. Biol. Sci., 1(1): 3-19. https://doi.org/10.22353/mjbs.2003.01.01
  2. Bayartogtokh B., Aoki J. 1998. Two new species of oribatid mites of the family Mycobatidae (Acari: Oribatei) from Mongolia. Edaphologia, 60: 37-44.
  3. Behan-Pelletier V.M. 1988. Redefinition of Zachvatkinibates (Acari: Mycobatidae), with description of a new species. Can. Entomol., 120: 797-813. https://doi.org/10.4039/Ent120797-8
  4. Behan-Pelletier V.M. 2015. Review of sexual dimorphism in brachypyline oribatid mites. Acarologia, 55(2): 127-146. https://doi.org/10.1051/acarologia/20152163
  5. Behan-Pelletier V.M., Eamer B. 2005. Zachvatkinibates (Acari: Oribatida: Mycobatidae) of North America, with descriptions of sexually dimorphic species. Can. Entomol., 137: 631-647. https://doi.org/10.4039/n05-055
  6. Behan-Pelletier V.M., Eamer, B. 2008. Mycobatidae (Acari, Oribatida) of North America. Can. Entomol., 140: 73-110. https://doi.org/10.4039/n07-027
  7. Behan-Pelletier V.M., Eamer B. 2010. The first sexually dimorphic species of Oribatella (Acari, Oribatida, Oribatellidae) and a review of sexual dimorphism in the Brachypylina. Zootaxa, 2332: 1-20. https://doi.org/10.11646/zootaxa.2332.1.1
  8. Behan-Pelletier V.M., Eamer B., Clayton M. 2001. Mycobatidae (Acari: Oribatida) of Pacific Northwest canopy habitats. Can. Entomol., 133: 755-776. https://doi.org/10.4039/Ent133755-6
  9. Berlese A. 1908. Elenco di generi e specie nuovi di Acari. Redia, 5: 1-15.
  10. Bjørklund P.K., Rekdal Y., Strand G.-H. 2015. Arealregnskap for utmark. Arealstatistikk for Finnmark. Ressursoversikt fra skog og landskap. 97 pp.
  11. BOLD. http://boldsystems.org
  12. CCDB 2021. The Canadian Centre for DNA Barcoding website. Available: https://www.ccdb.ca (Accessed October 2021).
  13. Elven R., Johansen V. 1983. Havstrand i Finnmark. Flora, vegetasjon og botaniske verneverdier. Miljøverndepartementet. Rapport T-541.
  14. Fischer B.M., Schatz H. 2007. Hornmilben (Acari: Oribatida). Gredleriana, 7: 414-456.
  15. Folmer O., Black M., Hoeh W., Lutz, R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol., 3(5): 294-299.
  16. Grandjean F. 1949. Formules anales, gastronotiques, génitales et aggénitales du développement numériques des poils chez les Oribates. Bull. Soc. Zool. Fr., 74: 201-225.
  17. Grandjean F. 1953. Essai de classification des Oribates (Acariens). Bull. Soc. Zool. Fr., 78: 421-446.
  18. Halbert J.N. 1920. The Acarina of the Seashore. Proc. R. Ir. Acad., 35(B): 105-152.
  19. Hammer M. 1977. Investigations on the oribatid fauna of North-West Pakistan. K. dansk. Vidensk. Selsk. Skr., 21(4): 1-108.
  20. Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. 2003. Biological identifications through DNA barcodes. Proc. Royal Soc. B, 270: 313-321. https://doi.org/10.1098/rspb.2002.2218
  21. Honciuc V. 1993. Researches of oribatid fauna (Acari, Oribatida) in different terrestrial ecosystems in the Danube Delta. Rev. roum. biol., Sér. biol. anim., 38(1): 21-29.
  22. Hull J.E. 1916. Terrestrial Acari of the Tyne Province, I. Oribatidae. Trans. Nat. Hist. Soc. Northumbria (n.s.), 4: 381-410.
  23. Koch C.L. 1839. Deutschlands Crustaceen, Myriapoden und Arachniden. Regensburg: Bd. 28-30.
  24. Koch C.L. 1841. Deutschlands Crustaceen, Myriapoden und Arachniden. Regensburg: Bd. 31-32.
  25. Lazarus S., Krisper, G. 2014. Diversity of the oribatid mite fauna (Acari, Oribatida) in two dry meadows in Styria (Austria). Soil Org., 86(2): 117-124.
  26. Leonov V.D., Rakhleeva A.A. 2015. New information on similarity and difference between highland and plain tundras of the Kola Peninsula based on oribatid mite data (Acari: Oribatida). Evraziat. Entomol. Z., 14(5): 489-499.
  27. Lundqvist L. 1987. Bibliografi och checklist över Sveriges oribatider (Acari: Oribatei). Entomol. Tidskr., 108(1): 3-12.
  28. Mahunka S. 1972. Punctoribates eoeryi sp. n., eine neue Milbenart vom Meeresstrand aus Jugoslawien (Acari, Oribatei). Ann. Hist. Nat. Mus. Nat. Hung., 64: 355-357.
  29. Mahunka S. 2006. Oribatids from Maramures (Romania, Transylvania) (Acari: Oribatida). Stud. Univ. Vasile Goldis Arad Ser. Stiint. Vietii, 17: 59-75.
  30. Makarova O., Behan-Pelletier V. 2015. Oribatida (=Cryptostigmata, Beetle mites). In: Böcher J., Kristensen N.P., Pape T., Vilhelmsen L. (Eds.): The Greenland Entomofauna. An Identification Manual of Insects, Spiders and Their Allies. Brill, Leiden - Boston. p. 802-845.
  31. Manu M., Honciuc V., Neagoe A., Băncilă R.I., Iordache V., Onete M. 2019. Soil mite communities (Acari: Mesostigmata, Oribatida) as bioindicators for environmental conditions from polluted soils. Sci. Rep., 9: 20250. https://doi.org/10.1038/s41598-019-56700-8
  32. Materna J. 2000. Oribatid communities (Acari: Oribatida) inhabiting saxicolous mosses and lichens in the Krkonoše Mts. (Czech Republic). Pedobiologia, 44: 40-62. https://doi.org/10.1078/S0031-4056(04)70027-X
  33. Mehl R. 1979. Checklist of Norwegian ticks and mites (Acari). Fauna Norv. B., 26(1): 31-45.
  34. Michael A.D. 1884. British Oribatidae. Vol I. Ray Society, London: 1-336.
  35. Miko L. 2013. History of oribatid studies (Acarina, Oribatida) in the Krkonoše National Park (the Giant Mountains, Czech Republic), with a revised checklist of all known species of the Giant Mountains. Opera Corcontica, 50/S: 143-164.
  36. Moen A. 1998. Nasjonalatlas for Norge: Vegetasjon. Statens kartverk, Hønefoss.
  37. Nae I., Băncilă R.I. 2017. Mesovoid shallow substratum as a biodiversity hotspot for conservation. Acarologia, 57(4): 855-868. https://doi.org/10.24349/acarologia/20174202
  38. Niemi R., Karppinen E., Uusitalo M. 1997. Catalogue of the Oribatida (Acari) of Finland. Acta Zool. Fenn., 207(1): 1-39.
  39. Norton R.A., Behan-Pelletier, V.M. 2009. Suborder Oribatida. Chapter 15. In: Krantz G.W., Walter D.E. (Eds.) A Manual of Acarology, Texas Tech University Press, Lubbock. p. 430-564.
  40. Pérez-Íñigo C. 1976. Acaros oribátidos de la Isla de Tenerife. (Acari, Oribatei). II Contribución. EOS-Rev. Esp. Entomol., 51: 85-141.
  41. Pfingstl T., Lienhard A., Baumann J., Koblmüller S 2021. A taxonomist's nightmare - Cryptic diversity in Caribbean intertidal arthropods (Arachnida, Acari, Oribatida). Mol. Phylogenet. Evol., 163: 107240. https://doi.org/10.1016/j.ympev.2021.107240
  42. Ryabinin N.A. 2015. Oribatid mites (Acari, Oribatida) in soils of the Russian Far East. Zootaxa, 3914(3): 201-244. https://doi.org/10.11646/zootaxa.3914.3.1
  43. Schatz H. 2020. Hornmilben (Acari, Oribatida) von Vorarlberg - Allgemeine Verbreitung und Habitatbindung. Inatura - Forschung online, 76: 9.
  44. Schatz H., Bruckner A. 2021. Hornmilben (Acari: Oribatida) aus dem Wildnisgebiet Dürrenstein und dem Urwald Rothwald (Österreich). Silva Fera, 8: 42-62.
  45. Schweizer J. 1922. Beiträge zur Kenntnis der terrestrischen Milbenfauna der Schweiz. Verh. Naturforsch. Ges. Basel., 23: 23-112. https://doi.org/10.5962/bhl.part.3644
  46. Seniczak A., Seniczak S. 2020. Diversity of oribatid mites (Acari: Oribatida) in the Svalbard archipelago: a historical overview, Zootaxa, 4834(1): 41-65. https://doi.org/10.11646/zootaxa.4834.1.3
  47. Seniczak A., Seniczak S. 2021. Morphological ontogeny and ecology of Ceratozetes parvulus (Acari: Oribatida: Ceratozetidae). Zootaxa, 5086(1): 111-134. https://doi.org/10.11646/zootaxa.5086.1.9
  48. Seniczak A., Seniczak S., Iturrondobeitia J.C., Solhøy T., Flatberg K.I. 2020a. Diverse Sphagnum mosses support rich moss mite communities (Acari, Oribatida) in mires of western Norway. Wetlands, 40, 1339-1351. https://doi.org/10.1007/s13157-019-01236-w
  49. Seniczak A., Seniczak S., Jordal B.H. 2019. Integrated taxonomy approach: molecular data and ontogeny studies clarify systematic status of Chamobates borealis (Acari, Oribatida). Syst. Appl. Acarol., 24(12): 2409-2426. https://doi.org/10.11158/saa.24.12.9
  50. Seniczak A., Seniczak S., Schwarzfeld M.D., Coulson S.J., Gwiazdowicz D.J. 2020b. Diversity and distribution of mites (Acari: Ixodida, Mesostigmata, Trombidiformes, Sarcoptiformes) in the Svalbard Archipelago. Diversity, 12(9): 323. https://doi.org/10.3390/d12090323
  51. Seniczak A., Seniczak S., Starý J., Kaczmarek S., Jordal B.H., Kowalski J., Roth S., Djursvoll P., Bolger T. 2021. High diversity of mites (Acari: Oribatida, Mesostigmata) supports the high conservation value of a broadleaf forest in eastern Norway. Forests, 12(8): 1098. https://doi.org/10.3390/f12081098
  52. Seniczak S., Seniczak A. 2008. Morphology of three European species of the genus Punctoribates Berlese, 1908 (Acari: Oribatida: Mycobatidae). Ann. Zool., 58(3): 473-485. https://doi.org/10.3161/000345408X364328
  53. Seniczak S., Seniczak A. 2018. Morphological ontogeny of Minunthozetes semirufus (Acari, Oribatida, Punctoribatidae). Zootaxa, 4540(1): 73-92. https://doi.org/10.11646/zootaxa.4540.1.8
  54. Seniczak S., Ivan O., Marquardt T., Seniczak, A. 2020c. Morphological ontogeny of Punctoribates astrachanicus (Acari: Oribatida: Punctoribatidae), and comments on Punctoribates Berlese. Zootaxa, 4900(1): 043-061. https://doi.org/10.11646/zootaxa.4900.1.6
  55. Seniczak S., Seniczak A., Coulson S.J. 2015. Morphology, distribution and biology of Mycobates sarekensis (Acari: Oribatida: Punctoribatidae). Int. J. Acarol., 41(8): 663-675. https://doi.org/10.1080/01647954.2015.1102968
  56. Seniczak S., Seniczak A., Kaczmarek S., Marquardt, T. 2018. Morphological ontogeny of Minunthozetes pseudofusiger (Acari, Oribatida, Punctoribatidae) and comments on Minunthozetes Hull. Syst. Appl. Acarol., 23(6): 1155-1168. https://doi.org/10.11158/saa.23.6.11
  57. Seniczak S., Seniczak A., Kaczmarek S., Marquardt T., Sarsenova B. 2020d. Morphological ontogeny of Zachvatkinibates latilamellatus (Acari: Oribatida: Punctoribatidae), and comments on Zachvatkinibates Shaldybina. Zootaxa, 4857(1): 97-116. https://doi.org/10.11646/zootaxa.4857.1.6
  58. Shaldybina E.S. 1973. New species of oribatid mites of the subfamily Minunthozetinae (Oribatei, Mycobatidae) from the territory of the Soviet Union. Zool. Zhurnal, 52(5): 689-699. (In Russian)
  59. Shaldybina E.S, Grishina L.G. 1987. Three new species of mites of subfamily Minunthozetinae (Oribatei, Mycobatidae). Insects, Mites and Helminths, Novosibirsk. p. 63-70. (In Russian)
  60. Shimano S., Aoki J. 2019. A new species of Japanese oribatid mite, Zachvatkinibates erimo sp. nov., showing sexual dimorphism (Acariformes: Oribatida: Punctoribatidae). Zootaxa, 4647(1): 362-367. https://doi.org/10.11646/zootaxa.4647.1.22
  61. Skubała P., Maslak M. 2009. Succession of oribatid fauna (Acari, Oribatida) in fallen spruce trees: Deadwood promotes species and functional diversity. In: Sabelis M.W., Bruin J. (Eds.), Trends in Acarology. p. 123-128. https://doi.org/10.1007/978-90-481-9837-5_19
  62. Subías L.S. 2004. Listado sistemático, sinonímico y biogeográfico de los Ácaros Oribátidos (Acariformes, Oribatida) del mundo (1758-2002). Graellsia, 60 (número extraordinario): 3-305. https://doi.org/10.3989/graellsia.2004.v60.iExtra.218
  63. Subias, L.S. 2022. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (excepto fósiles). Monografías electrónicas SEA, 12: 1-539. http://www.sea-entomologia.org
  64. Starý J. 2006. Contribution to the knowledge of the oribatid mite fauna (Acari, Oribatida) of peat bogs in Bohemian Forest. Silva Gabreta, 12: 35-47.
  65. Trägårdh I. 1910. Acariden aus dem Sarekgebirge. Naturw. Untersuch. des Sarekgebirges, 4: 375-586.
  66. Weigmann G. 2006. Hornmilben (Oribatida). Die Tierwelt Deutschlands, 76. Teil. Goecke & Evers, Keltern, 520 pp.
  67. Weigmann G. 2009. Oribatid mites (Acari: Oribatida) from the coastal region of Portugal. II. The genera Zachvatkinibates and Punctoribates (Mycobatidae). Soil Org., 81(1): 85-105.
  68. Willmann C. 1928. Die Oribatidenfauna nordwestdeutscher und einiger süddeutscher Moore. Abh. Naturwiss. Ver. Bremen, 27(1): 143-176.
  69. Willmann C. 1929. Neue Oribatiden II. Zoologischer Anzeiger, 80(1-2): 43-46.
  70. Winchester N.N., Lindo Z., Behan-Pelletier V.M. 2008. Oribatid mite communities in the canopy of montane Abies amabilis and Tsuga heterophylla trees on Vancouver Island, British Columbia. Environ. Entomol., 37(2): 464-471. https://doi.org/10.1093/ee/37.2.464


Comments
Please read and follow the instructions to post any comment or correction.

Article editorial history
Date received:
2022-08-12
Date accepted:
2022-12-09
Date published:
2023-01-13

Edited by:
Baumann, Julia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License
2023 Seniczak, Anna; Seniczak, Stanisław; Hagen, Snorre B. and Klütsch, Cornelya F. C.
Downloads
 Download article

 Download low definition

Download the citation
RIS with abstract 
(Zotero, Endnote, Reference Manager, ProCite, RefWorks, Mendeley)
RIS without abstract 
BIB 
(Zotero, BibTeX)
TXT 
(PubMed, Txt)
Article metrics

Dimensions

Cited by: view citations with

Search via ReFindit