Share this article    

       

       

Does artificial selection for fixed prey preference affect learning in a predatory mite? Experiments to unravel mechanisms underlying polyphagy in Hypoaspis aculeifer

Sabelis, M.W. and Lesna, I.


2010 - Volume: 50 Issue: 2 pages: 257-268

https://doi.org/10.1051/acarologia/20101971

Keywords

learning prey preference artificial selection predatory mite Hypoaspis aculeifer Laelapidae

Abstract

Individual reproductive success in polyphagous arthropod predators critically depends on the prey species included in their diet. Hence, selection will act on traits that enable the predator to tune its preference to the best prey available. Such traits may be either rigid or flexible and are manifested as genetically fixed or learned preferences. Whether these two types of behaviour are mutually exclusive or manifest themselves in condition-dependent ways, is still an open question. We sought possible answers by studying a soil-dwelling predatory mite (Hypoaspis (Gaeolaelaps) aculeifer Canestrini), known to exhibit a genetic polymorphism in prey preferences within local populations. We had previously shown that 4 generations of artificial selection on the choice for either of two astigmatic mites (Rhizoglyphus robini and Tyrophagus putrescentiae) resulted in isofemale lines with contrasting prey preferences (R-line and T-line) and that the preference traits are inherited as though they are monogenic without dominance. In this article, we ask whether artificial selection has influenced the ability to switch preferences in a condition-dependent way. First, we conditioned the female predators of both isofemale lines by starving them in the presence of odour from each of the two prey species separately or in the absence of any prey odour. Then, at least half an hour later, we assessed their prey preference in two-choice tests. When starved in presence of odour from non-preferred prey, both lines show a slight but non-significant increase in preference for their preferred prey. However, when starved in presence of odour from the preferred prey, predators of both lines showed a clear and significant switch toward the alternative prey. This shows the ability of predatory mites to memorize the odour experienced during starvation, and to change their prey preference. It also shows that - despite four generations of artificial selection for a fixed prey preference - they retain the ability to exhibit a form of learning and to switch preferences. This result sheds new light on the impact of selection on fixed and flexible prey preferences in polyphagous arthropod predators that experience different dominant prey species in space and time.

Comments
Please read and follow the instructions to post any comment or correction.

Article editorial history
Date received:
2010-01-08
Date accepted:
2010-05-17
Date published:
2010-06-30

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License
2010 Sabelis, M.W. and Lesna, I.
Downloads
 Download article

Download the citation
RIS with abstract 
(Zotero, Endnote, Reference Manager, ProCite, RefWorks, Mendeley)
RIS without abstract 
BIB 
(Zotero, BibTeX)
TXT 
(PubMed, Txt)
Article metrics
Number of distinct pdf views
741

Dimensions

Cited by: view citations with

Search via ReFindit